Question 1. Use ε -N notation to show that $\lim_{n\to\infty} \frac{2n^2}{n^2-n}$ $\frac{2n}{n^2 - n + 1} = 2.$

Solution. Note that for $n > 1$,

$$
\left|\frac{2n^2}{n^2 - n + 1} - 2\right| = \frac{2n - 2}{n^2 - n + 1} \le \frac{2n - 2}{n^2 - n} = \frac{2(n - 1)}{n(n - 1)} = \frac{2}{n}.
$$

Let $\varepsilon > 0$. By Archimedean Property, there exists $N \in \mathbb{N}$ such that

$$
N > \max\left\{1, \frac{2}{\varepsilon}\right\}.
$$

In particular, we have $N > 1$ and $N > 2/\varepsilon$. Hence whenever $n \geq N$,

$$
\left|\frac{2n^2}{n^2 - n + 1} - 2\right| \le \frac{2}{n} \le \frac{2}{N} < \varepsilon.
$$

Since $\varepsilon > 0$ is arbitrary, the result follows.

Question 2. Let (x_n) be a convergent sequence of non-zero numbers. Show that if $\lim x_n \neq$ 0, then the sequence $(1/x_n)$ is also convergent.

Give an example to show that the above assertion is not true if the assumption "lim $x_n \neq 0$ " is removed.

Solution. Let $L = \lim x_n \neq 0$. We claim that the sequence $(1/x_n)$ converges to $1/L$. For, first note that

$$
\left|\frac{1}{x_n} - \frac{1}{L}\right| = \left|\frac{L - x_n}{x_n \cdot L}\right| = \frac{1}{|x_n||L|} |x_n - L|, \quad \forall n \in \mathbb{N}.
$$

Since $L = \lim x_n$, there exists $N_1 \in \mathbb{N}$ such that

$$
|x_n - L| < \frac{|L|}{2}, \quad \forall n \ge N_1.
$$

By the reverse triangle inequality, we have

$$
|L| - |x_n| \leq ||x_n| - |L|| \leq |x_n - L|, \quad \forall n \in \mathbb{N}.
$$

Hence

$$
|L| - |x_n| < \frac{|L|}{2}, \quad \forall n \ge N_1.
$$

It follows that

$$
|x_n| > \frac{|L|}{2}, \quad \forall n \ge N_1.
$$

Let $\varepsilon > 0$. Since $L = \lim x_n$, there exists $N_2 \in \mathbb{N}$ such that

$$
|x_n - L| < \frac{|L|^2}{2}\varepsilon, \quad \forall n \ge N_2.
$$

Prepared by Ernest Fan 1

Take $N = \max\{N_1, N_2\}$, so $N \geq N_1$ and $N \geq N_2$. Then whenever $n \geq N$,

$$
\left|\frac{1}{x_n} - \frac{1}{L}\right| = \frac{1}{|x_n||L|} |x_n - L| < \frac{2}{|L|^2} |x_n - L| < \varepsilon.
$$

Since $\varepsilon > 0$ it arbitrary, the claim follows and hence the sequence $(1/x_n)$ is convergent.

To show that the above assertion is not true if the assumption "lim $x_n \neq 0$ " is removed, consider the sequence $(1/n)$. Note that it is a convergent sequence of non-zero numbers with $\lim(1/n) = 0$. However, the sequence $(1/(1/n)) = (n)$ is not convergent. Therefore, this example shows that the above assertion is not true if the assumption "lim $x_n \neq 0$ " is removed.

Question 3. We say that a sequence (x_n) diverges properly to $+\infty$ if for any $M > 0$, there is a positive integer N such that $x_n > M$ for all $n \geq N$.

Let (x_n) be a sequence which is not bounded above. Show that (x_n) has a strictly increasing subsequence (x_{n_k}) which diverges properly to $+\infty$.

Solution. Let $n_1 = 1$ and consider the set

$$
X_1 = \{x_n : n > n_1\}.
$$

We claim that X_1 is not bounded above. For, suppose on a contrary that X_1 is bounded above, then there exists some $M_1 > 0$ such that $x_n \leq M_1$ for all $n > n_1$. If we take $M_0 = \max\{x_1, ..., x_{n_1}, M_1\}$, then

$$
x_n \le M_0, \quad \forall n \in \mathbb{N}.
$$

i.e., (x_n) is bounded above, which contradicts the assumption, so the claim is asserted. Since X_1 is not bounded above, there exists some $n_2 > n_1$ such that $x_{n_2} > \max\{x_{n_1}, 1\}$. i.e.,

$$
x_{n_2} > x_{n_1}
$$
 and $x_{n_2} > 1$.

Now consider the set

$$
X_2 = \{x_n : n > n_2\}.
$$

In a similar manner, X_2 is not bounded above. Hence there exists some $n_3 > n_2$ such that $x_{n_3} > \max\{x_{n_1}, 2\}$. Repeating this process, we can choose a sequence of strictly increasing positive integers (n_k) such that

$$
x_{n_{k+1}} > x_{n_k}
$$
 and $x_{n_{k+1}} > k$, $\forall k \in \mathbb{N}$.

Thus, the subsequence (x_{n_k}) is strictly increasing. It left to show that (x_{n_k}) diverges properly to $+\infty$. For, let $M > 0$. By Archimedean Property, there exists some $K \in \mathbb{N}$ such that $K > M + 1$. Then whenever $k \geq K$,

$$
x_{n_k} > k - 1 \ge K - 1 > M.
$$

Since $M > 0$ is arbitrary, it follows that (x_{n_k}) diverges properly to $+\infty$.

Prepared by Ernest Fan 2

Question 4. By using the definition of Cauchy sequence, show that if a Cauchy sequence (x_n) has a convergent sequence, then the sequence (x_n) must be convergent.

Solution. Let $\varepsilon > 0$ and (x_{n_k}) be a convergent subsequence of (x_n) with limit L. Since (x_{n_k}) converges to L, there exists some $K \in \mathbb{N}$ such that

$$
|x_{n_k} - L| < \frac{\varepsilon}{2}, \quad \forall k \ge K.
$$

Since (x_n) is Cauchy, there exists some $N \in \mathbb{N}$ such that

$$
|x_n - x_m| < \frac{\varepsilon}{2} \quad \forall n, m \ge N.
$$

Let $k = \max\{K, N\}$. Then $k \ge K$ and $n_k \ge k \ge N$. Then whenever $n \ge N$,

$$
|x_n - L| \le |x_n - x_{n_k}| + |x_{n_k} - L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
$$

Since $\varepsilon > 0$ is arbitrary, it follows that (x_n) must be convergent.